10 research outputs found

    Evaluation and Advancement of Electrocorticographic Brain-Machine Interfaces for Individuals with Upper-Limb Paralysis

    Get PDF
    Brain-machine interface (BMI) technology aims to provide individuals with movement paralysis a natural and intuitive means for the restoration of function. Electrocorticography (ECoG), in which disc electrodes are placed on either the surface of the dura or the cortex to record field potential activity, has been proposed as a viable neural recording modality for BMI systems, potentially providing stable, long-term recordings of cortical activity with high spatial and temporal resolution. Previous demonstrations of BMI control using ECoG have consisted of short-term periods of control by able-bodied subjects utilizing basic processing and decoding techniques. This dissertation presents work seeking to advance the current state of ECoG BMIs through an assessment of the ability of individuals with movement paralysis to control an ECoG BMI, an investigation into adaptation during BMI skill acquisition, an evaluation of chronic implantation of an ECoG electrode grid, and improved extraction of BMI command signals from ECoG recordings. Two individuals with upper-limb paralysis were implanted with high-density ECoG electrode grids over sensorimotor cortical areas for up to 30 days, with both subjects found to be capable of voluntarily modulating their cortical activity to control movement of a computer cursor with up to three degrees of freedom. Analysis of control signal angular error and the tuning characteristics of ECoG spectral features during the acquisition of brain control revealed that both decoder calibration and fixed-decoder training could facilitate performance improvements. In addition, to better understand the capability of ECoG to provide robust, long-term recordings, work was conducted assessing the effects of chronic implantation of an ECoG electrode grid in a non-human primate, demonstrating that movement-related modulation could be recorded from electrode nearly two years post-implantation despite the presence of substantial fibrotic encapsulation. Finally, it was found that the extraction of command signals from ECoG recordings could be improved through the use of a decoding method incorporating weight-space priors accounting for the expected correlation structure of electrical field potentials. Combined, this work both demonstrates the feasibility of ECoG-based BMI systems as well as addresses some of key challenges that must be overcome before such systems are translated to the clinical realm

    Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    Get PDF
    This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development

    Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis

    No full text
    OBJECTIVE: Brain-computer interface (BCI) technology aims to provide individuals with paralysis a means to restore function. Electrocorticography (ECoG) uses disc electrodes placed on either the surface of the dura or the cortex to record field potential activity. ECoG has been proposed as a viable neural recording modality for BCI systems, potentially providing stable, long-term recordings of cortical activity with high spatial and temporal resolution. Previously we have demonstrated that a subject with spinal cord injury (SCI) could control an ECoG-based BCI system with up to three degrees of freedom (Wang et al 2013 PLoS One). Here, we expand upon these findings by including brain-control results from two additional subjects with upper-limb paralysis due to amyotrophic lateral sclerosis and brachial plexus injury, and investigate the potential of motor and somatosensory cortical areas to enable BCI control. APPROACH: Individuals were implanted with high-density ECoG electrode grids over sensorimotor cortical areas for less than 30 d. Subjects were trained to control a BCI by employing a somatotopic control strategy where high-gamma activity from attempted arm and hand movements drove the velocity of a cursor. MAIN RESULTS: Participants were capable of generating robust cortical modulation that was differentiable across attempted arm and hand movements of their paralyzed limb. Furthermore, all subjects were capable of voluntarily modulating this activity to control movement of a computer cursor with up to three degrees of freedom using the somatotopic control strategy. Additionally, for those subjects with electrode coverage of somatosensory cortex, we found that somatosensory cortex was capable of supporting ECoG-based BCI control. SIGNIFICANCE: These results demonstrate the feasibility of ECoG-based BCI systems for individuals with paralysis as well as highlight some of the key challenges that must be overcome before such systems are translated to the clinical realm. ClinicalTrials.gov Identifier: NCT01393444

    Decoding and Cortical Source Localization for Intended Movement Direction With MEG

    No full text
    Magnetoencephalography (MEG) enables a noninvasive interface with the brain that is potentially capable of providing movement-related information similar to that obtained using more invasive neural recording techniques. Previous studies have shown that movement direction can be decoded from multichannel MEG signals recorded in humans performing wrist movements. We studied whether this information can be extracted without overt movement of the subject, because the targeted users of brain-controlled interface (BCI) technology are those with severe motor disabilities. The objectives of this study were twofold: 1) to decode intended movement direction from MEG signals recorded during the planning period before movement onset and during imagined movement and 2) to localize cortical sources modulated by intended movement direction. Ten able-bodied subjects performed both overt and imagined wrist movement while their cortical activities were recorded using a whole head MEG system. The intended movement direction was decoded using linear discriminant analysis and a Bayesian classifier. Minimum current estimation (MCE) in combination with a bootstrapping procedure enabled source-space statistical analysis, which showed that the contralateral motor cortical area was significantly modulated by intended movement direction, and this modulation was the strongest ∼100 ms before the onset of overt movement. These results suggest that it is possible to study cortical representation of specific movement information using MEG, and such studies may aid in presurgical localization of optimal sites for implanting electrodes for BCI systems

    An Electrocorticographic Brain Interface in an Individual with Tetraplegia

    Get PDF
    <div><p>Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex can be used for real-time device control in paralyzed individuals.</p> </div

    High-density ECoG grid location and ECoG signal modulation during motor screening tasks.

    No full text
    <p>(a) Layout of the recording (gray, brain-facing), reference (red, dura-facing), and ground (green, dura-facing) electrodes. (b) ECoG electrode location mapped to a 3D rendering of the participant's brain. Red dots represent ECoG electrodes, and Electrodes 1 and 32 are labeled to indicate grid orientation. The black arrow indicates the central sulcus (CS) of the left hemisphere. (c) Modulation of ECoG signals by attempted hand opening/closing (left column) and elbow flexion/extension (right column) for Channel 4 (top row) and Channel 7 (bottom row). These four time-frequency plots show data averaged over 24 trials. Black sinusoidal curves overlaid on all plots represent the normalized instructed joint angles. Time 0 is the onset of visual cues (hand fully-open, elbow fully-extended). Color represents pseudo z-scores, indicating changes from baseline condition, and color axes of all plots have the same range. Red and blue colors indicate increases and decreases in spectral power, respectively. High-gamma band (70–110 Hz) powers increased for Channels 4 and 7 during attempted hand and elbow movements, respectively. Also, for both channels, the high-gamma band power differed between attempted hand and elbow movements. (d) Cortical activity patterns across all 28 recording electrodes during attempted hand and elbow movements represented by 70–110 Hz band power over the 10-second movement time averaged across 24 trials. The color bars represent pseudo z-scores. Cortical activity patterns differed between hand and elbow movements.</p

    Collaborative approach in the development of high-performance brain-computer interfaces for a neuroprosthetic arm: translation from animal models to human control

    No full text
    Our research group recently demonstrated that a person with tetraplegia could use a brain-computer interface (BCI) to control a sophisticated anthropomorphic robotic arm with skill and speed approaching that of an able-bodied person. This multiyear study exemplifies important principles in translating research from foundational theory and animal experiments into a clinical study. We present a roadmap that may serve as an example for other areas of clinical device research as well as an update on study results. Prior to conducting a multiyear clinical trial, years of animal research preceded BCI testing in an epilepsy monitoring unit, and then in a short-term (28 days) clinical investigation. Scientists and engineers developed the necessary robotic and surgical hardware, software environment, data analysis techniques, and training paradigms. Coordination among researchers, funding institutes, and regulatory bodies ensured that the study would provide valuable scientific information in a safe environment for the study participant. Finally, clinicians from neurosurgery, anesthesiology, physiatry, psychology, and occupational therapy all worked in a multidisciplinary team along with the other researchers to conduct a multiyear BCI clinical study. This teamwork and coordination can be used as a model for others attempting to translate basic science into real-world clinical situations
    corecore